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Performance Issues in Broadband Networks 3

☞ Broadband traffic exhibits Long Range Dependence (LRD), which has a deep impact on performance

☞ Wide-area networks handle heterogeneous traffic flows with a variety of Quality of Service (QoS)

requirements and a primary QoS parameter is the Packet Loss Rate

☞ Typical values of the loss rate can be very small and therefore hard to estimate through standard

Monte Carlo simulation

☞ We focus on the efficient simulation of a single server queue equipped with an infinite buffer and fed by

Gaussian inputs

➳ Flexibility and parsimony: a broad range of correlation structures can be described by few

parameters

➳ Possibility of accurately modelling network data traffic

➳ Central-limit-type arguments: in a wide-area network a large number of independent sources are

multiplexed and it is reasonable to argue that the aggregate traffic converges to a Gaussian process

➳ Fractional Brownian Motion (FBM) has become a canonical model in the context of LRD traffic

➳ Integrated Ornstein-Uhlenbeck process (IOU)
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Problem statement and system parameters 4

☞ We refer to a single server queue

r=µ+m

At=Xt+mt

Qt

➳ Input traffic

At = Xt + mt

➠ m is the mean input rate

➠ {Xt}t is a random centred Gaussian Component with variance vt
∆
= DXt

Covariance function Γts
∆
= E [Xt Xs] =

1

2

[
vt + vs − v|t−s|

]

➳ Deterministic service rate

r = m+ µ with µ > 0
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Overflow probability 5

☞ We consider an upper bound for the loss rate, namely the overflow probability, defined as the

probability that the steady-state queue-length Q exceeds a given threshold b

☞ From Lindley’s recursion, the overflow probability can be rewritten as

P (Q ≥ b) = P

(
sup
t≥0

(Xt − µt) ≥ b

)
= P

(
sup
t≥0

(Xt − ϕt) ≥ 0

)
where ϕt = b+ µt

➳ In general, this probability has not a closed form

➳ In applications (finance, telecommunications) usually it is very small

☞ To study the behaviour of the estimators when the probability of interest is small, we introduce a

smallness parameter ε in the problem and consider the probabilities pε defined as

pε = P

(
sup
t∈I

(εXt − ϕt) ≥ 0

)
= P (Aε)

where I is a finite (simulation horizon is finite) index set: the process X is just a random vector in

X = R
n, where n = |I| (cardinality of I)

☞ For the trivial MC estimator p̂ε,MC it is easy to show that when pε → 0, the number N of samples to

obtain a reliable estimate grows as p−1
ε

Performance analysis of Bridge Monte-Carlo Estimator Trondheim – June 2012
Michele Pagano



Basic Large Deviations for Gaussian processes 6

☞ Roughly, the Large Deviation Principle for Gaussian Processes states that given an event B

−ε2 log P(εX ∈ B) ≃ 1

2
inf
ρ∈B

|ρ|2H as ε→ 0

For a finite-dimensional Gaussian process X we have the explicit expression

|ρ|2H = 〈ρ, ρ〉H = 〈ρ,Γ−1ρ〉 =

n∑

i=1

n∑

j=1

ρiρj(Γ
−1)i j

where 〈·, ·〉 is the Euclidean scalar product of X and Γ−1 is the inverse of the

n× n covariance matrix {Γij}i,j=1,...,n

☞ Heuristics behind Large Deviations for Gaussian processes

In the finite dimensional case X ∈ R
n, B ⊂ R

n and

E
[
1{εX∈B}

]
= Cε−n/2

∫

B

e−ε−2 1

2
|x|2

Hdnx ≃ Cε−n/2e−ε−2 infx∈B
1

2
|x|2

H
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The Path to Buffer Overflow 7

☞ For the particular structure of the event Aε we have:

− lim
ε→0

ε2 log pε = − lim
ε→0

ε2 log P(Aε) =
1

2
inf
ρ∈A

|ρ|2H = inf
t∈I

ϕ2
t

2Γtt

∆
= inf

t∈I
It =

1

2
|ρ∗|2H

➳ The value t∗ of t which minimizes It is called most-likely time

➳ The value of ρ which reaches the minimum is the most-likely path ρ∗: in the large deviation regime,

the majority of the samples of the process which attains the level ϕ are concentrated around ρ∗

t∗

ϕt = b+ µt
ρ∗t = ϕt∗Γtt∗/Γt∗t∗

t

The most-likely time t∗ can be evaluated when X is a FBM ⇒ t∗ =
bH

µ(1 −H)
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The Bridge Monte-Carlo (BMC) approach 8

☞ An alternative approach can be derived by expressing the overflow probability as the expectation of a

function of the Bridge Y of the Gaussian process X

☞ The Bridge Y is the process obtained by conditioning X to reach a certain level (in our case the level

0) at some prefixed time τ ; in the following we will assume that τ = t∗
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The Gaussian Bridge 9

☞ Fix τ and consider the following centred Gaussian process

Yt = Xt − ψtXτ where ψt
∆
=

Γtτ

Γτ τ

and suppose that ψ0 = 0 and ψt > 0 for all other values of t ∈ I
➳ These conditions are automatically satisfied if vt is an increasing function

☞ The joint process (X,Y ) is still Gaussian and the process Y is independent of Xτ since

Cov(Xτ , Yt) = E[XτYt] = Γτt −
Γtτ

Γττ
Γττ = 0 for any t

☞ Y has covariance function Γ̃ given by

Γ̃ts = Γts −
Γt τΓs τ

Γτ τ

☞ BMC does not rely on any change of measure
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A graphical interpretation of the Gaussian Bridge 10

Yt =Xt - ψtXτ

Yt

Xt

XτXτ

Xτ ψtXτ ψt

ττ

tt
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The Gaussian Bridge at Work 11

☞ We can express the probability PL of the event L =

{
sup
t∈I

[Xt − ϕt] ≥ 0

}
as follows

PL = P

(
sup
t∈I

[Xt − ϕt] ≥ 0

)
= P

(
sup
t∈I

[Yt + ψtXτ − ϕt] ≥ 0

)

= P

(
inf
t∈I

(ϕt − Yt − ψtXτ ) ≤ 0

)

☞ The events

A =

{
inf
s∈I

(
ϕs − Ys − ψsXτ

)
≤ 0

}
and B =

{
inf
t∈I

ψ−1
t

(
ϕt − Yt

)
≤ Xτ

}

are equivalent (see next slide)

☞ Denote

Y
∆
= inf

t∈I

ϕt − Yt

ψt
and Φ(x)

∆
=

∫ ∞

x

e−y2/2

√
2π

dy

By the independence between Y and Xτ , where Xτ ∈ N (0,Γτ τ )

PL = P
(
Y ≤ Xτ

)
= E

[
Φ

(
Y√
Γτ τ

)]
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Equivalence between sets A and B 12

A =

{
inf
s∈I

(
ϕs − Ys − ψsXτ

)
≤ 0

}
B =

{
inf
t∈I

ψ−1
t

(
ϕt − Yt

)
≤ Xτ

}

☞ Let us show that A ⊆ B

➳ Fix ω ∈ A and let s∗ = argmin(ϕs − Ys − ψsXτ )

➳ Then

ϕs∗ − Ys∗(ω) − ψs∗Xτ (ω) = inf
s∈I

(ϕs − Ys(ω) − ψsXτ (ω)) ≤ 0

➳ Consequently

inf
t∈I

ψ−1
t [ϕt − Yt(ω)] ≤ ψ−1

s∗ [ϕs∗ − Ys∗(ω)] ≤ Xτ (ω) ⇒ ω ∈ B

➳ Then, A ⊆ B

☞ Similarly it is easy to check that B ⊆ A

☞ Thus these two events are equivalent
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The bridge estimator 13

☞ MC can be seen as a numerical scheme to perform integration in a large number of variables

☞ BMC performs one of these integrations exactly exploiting properties of Gaussian processes.

The rest of the integrations are still performed using a MC scheme

PL = E

[
Φ

(
Y√
Γτ τ

)]

☞ In the full space the characteristic function of the rare event has support on a region with small

probability and this renders MC ineffective. However BMC smooth out the function to be integrated

allowing a more efficient estimation by the MC part

☞ Given an iid sequence {Y (i), i = 1, . . . , N} distributed as Y , the bridge estimator p̂N for PL is

p̂N ∆
=

1

N

N∑

i=1

Φ

(
Y

(i)

√
Γτ τ

)
where Y

(i) ∆
= inf

t∈I

ϕt − Y
(i)
t

ψt
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Asymptotic approximation of the BMC estimator 14

☞ For some values of the system parameters, the infimum in the expression of

Y
∆
= inf

t∈I

ϕt − Yt

ψt

∆
= inf

t∈I
Gt

is attained near the most-likely time τ , with Gτ = ϕτ

☞ Assume that Y
(i) ∈

[
ϕτ − h, ϕτ

]
; then

Φ

(
ϕτ√
Γτ τ

)
≤ p̂N ≤ Φ

(
ϕτ − h√

Γτ τ

)

☞ The lower bound, in the approximation Φ(x) ≈ e−x2/2, corresponds to the well-known LDT

asymptotic bound

PL ≈ e−ϕ2

τ
/2Γτ τ

☞ The difference between upper and lower bounds

∆
∆
= Φ

(
ϕτ − h√

Γτ τ

)
− Φ

(
ϕτ√
Γτ τ

)
≈ −Φ′

(
ϕτ√
Γτ τ

)
h√
Γτ τ

=
h√

2π Γτ τ

e−ϕ2

τ
/2Γτ τ
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Bridge estimator in the many-sources regime 15

☞ Many-sources regime

➳ n i.i.d. Gaussian sources

➳ The queueing resources (buffer size and service rate) are linearly scaled with n

➳ Buffer overflow (over level nb) becomes a rare event when n→ ∞

nr = n(µ+m)
At=

P

n

i=0
Xi

t
+nmt

Qt

☞ The overflow probability, in this case, is given by

P (Q ≥ nb) = P

(
sup
t∈I

(√
1/n Xt − ϕt

)
≥ 0

)
∆
= P

(
sup
t∈I

(εXt − ϕt) ≥ 0

)

☞ Given an iid sequence {Y (i), i = 1, . . . , N} distributed as Y , the bridge estimator for pε is

p̂N
ε

∆
=

1

N

N∑

i=1

Φ

(
Y

(i)

ε

ε
√

Γτ τ

)
where Y

(i)

ε
∆
= inf

t∈I

ϕt − εY
(i)
t

ψt
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Simulation Scenario 16

☞ Input traffic

➳ Fractional Brownian Motion (FBM) ⇒ vt = t2H

➳ Superposition of two independent FBMs ⇒ vt = t2H1 + t2H2

➳ Integrated Ornstein-Uhlenbeck process (IOU) ⇒ vt = t− 1 + e−t

☞ Number of generated sample paths: N = 104

☞ Comparison with LDT asymptotics

➳ Large-buffer regime

log P (Q > b) ≈ − inf
t≥0

ϕ2
t

2 Γtt

➳ Many-sources regime

log P (Q > nb) ≈ −n inf
t≥0

ϕ2
t

2 Γtt

☞ Analysis of the upper and lower bounds for p̂N
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Simulation Results: FBM (H=0.8) 17
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Many-sources regime 18
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Variability of Y
(i)

– sample path ( n = 500) 19
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Variability of Y
(i)

– histograms 20
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Variability of Y
(i)

– histograms 21
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Variability of Y
(i)

– normalized width of the interval 22
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Conclusions 23

☞ We analysed the performance of the Bridge Monte-Carlo (BMC) estimator, which does not rely on

Importance Sampling and does not need any refined preventive theoretical analysis

☞ Key features of BMC

➳ Although BMC is not asymptotically efficient, for any choice of the rarity parameter ε, BMC performs

better than single-twist IS, even when the change of measure is based on the most likely path ρ∗

For any ε > 0 and any twist η of the form ηt = λψt (α ∈ R):

σ2
BMC,ε ≤ σ2

twist ,ε

➳ The computational cost of BMC is comparable to that of simple IS

➳ The principle underlying the BMC method can be applied to any Gaussian process

➳ BMC could be generalized with more than one conditioning or with dynamic choice of the

parameters

☞ Analysis of upper and lower bounds of the overflow probability (based on the expression of the BMC

estimator)
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