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Performance Issues in Broadband Networks 3

[1 Broadband traffic exhibits Long Range Dependence (LRD), which has a deep impact on performance

[1 Wide-area networks handle heterogeneous traffic flows with a variety of Quality of Service (QoS)

requirements and a primary QoS parameter is the Packet Loss Rate

L] Typical values of the loss rate can be very small and therefore hard to estimate through standard

Monte Carlo simulation
[1 We focus on the efficient simulation of a single server queue equipped with an infinite buffer and fed by
Gaussian inputs

[1 Flexibility and parsimony: a broad range of correlation structures can be described by few

parameters
[1 Possibility of accurately modelling network data traffic

[1 Central-limit-type arguments: in a wide-area network a large number of independent sources are

multiplexed and it is reasonable to argue that the aggregate traffic converges to a Gaussian process
[1 Fractional Brownian Motion (FBM) has become a canonical model in the context of LRD traffic

[1 Integrated Ornstein-Uhlenbeck process (IOU)
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Problem statement and system parameters 4

[1 We refer to a single server queue

At :Xt —I—mt

Q =l

L1 Input traffic
At — Xt —|— mt

[1 m is the mean input rate

, : : : A
[0 { X} is arandom centred Gaussian Component with variance v; = DX}

: : JA\
Covariance function I’y =

1
E[X; X] = 2 [vr+vs = Vs—s]

[1 Deterministic service rate

r=m-+pu  with u>0
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Overflow probability

[1 We consider an upper bound for the loss rate, namely the overflow probability, defined as the
probability that the steady-state queue-length () exceeds a given threshold b

[1 From Lindley’s recursion, the overflow probability can be rewritten as

P(Q >0b) = P(Sup (Xt—,ut)Zb> = P(Sup (Xt—got)Z()) where p; = b+ ut

t>0 t>0
[1 In general, this probability has not a closed form

[1 In applications (finance, telecommunications) usually it is very small

[1 To study the behaviour of the estimators when the probability of interest is small, we introduce a

smallness parameter € in the problem and consider the probabilities p- defined as

pe = P (sup (eXy — @) > O) = P(A,)
teT

where 7 is a finite (simulation horizon is finite) index set: the process X is just a random vector in
X = R", where n = |Z| (cardinality of Z)

For the trivial MC estimatorﬁs’,\,lc it is easy to show that when p. — 0, the number /N of samples to
obtain a reliable estimate grows as p;l
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Basic Large Deviations for Gaussian processes 6

[1 Roughly, the Large Deviation Principle for Gaussian Processes states that given an event B

1
—e?logP(eX € B) ~ 5 1££\p|H as ¢ — 0

For a finite-dimensional Gaussian process X we have the explicit expression

pl3 = (p, Py = (p, T p) Zszpy

1=1 3=1

where (-, -) is the Euclidean scalar product of X and '~ is the inverse of the

n x n covariance matrix {I';; }i i=1.. n

[] Heuristics behind Large Deviations for Gaussian processes

In the finite dimensional case X € R™, B C R"™ and

J— _ _2l 2 iy . _2. l 2
K [1{€X€B}] — (e H/Q/ e~ € 2|x|Hdn$ ~ C¢ n,/26 e “inf.en 5|7|%
B
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The Path to Buffer Overflow 7

[ For the particular structure of the event A, we have:

1 g02 A 1
— lim %1 = —lime’logP(A,) = = inf |p|3, = inf =5 = inf I, = =|p*|5
JmL € 108 Pe CLILERECS (Ae) Q;QA‘le - o, e 2|P 7+

[1 The value t* of ¢ which minimizes I; is called most-likely time

[1 The value of p which reaches the minimum is the most-likely path p*: in the large deviation regime,

the majority of the samples of the process which attains the level ¢ are concentrated around p*

A

P = Qe Lgpr [T pngn

The most-likely time ¢* can be evaluated when X isa FBM = t* =
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The Bridge Monte-Carlo (BMC) approach 8

[1 An alternative approach can be derived by expressing the overflow probability as the expectation of a

function of the Bridge Y of the Gaussian process X

[l The Bridge Y is the process obtained by conditioning X to reach a certain level (in our case the level

0) at some prefixed time 7; in the following we will assume that 7 = t*
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The Gaussian Bridge 9

[1 Fix 7 and consider the following centred Gaussian process

JAN FtT
. N

Yi = Xy —yy X where )y

and suppose that 109 = 0 and v; > 0 for all other values of t € Z

[1 These conditions are automatically satisfied if v; is an increasing function

[1 The joint process (X, Y') is still Gaussian and the process Y is independent of X, since

T
cov(X,,Y;) =E[X, Y] =Ty — FLPTT =0 forany t
[1 Y has covariance function f given by
i I TFS’T
Fts N Fts _ tFT

[l BMC does not rely on any change of measure
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A graphical interpretation of the Gaussian Bridge 10

Y; = X¢ - e X

Performance analysis of Bridge Monte-Carlo Estimator Trondheim — June 2012

Michele Pagano



The Gaussian Bridge at Work 11

We can express the probability IP;, of the event L — {SU.p[Xt — | > O} as follows
teT

Py, =P (sup[Xt — ] > 0) =P (Sup[Yt + Ui Xr — 4] > 0)
tel tel

= ]P)(mf(@t — i X7) < )

teT
The events

A = {mf( Ys—wsXT) SO} and B = {1nf¢t ( Yt) gXT}

sel tel

are equivalent (see next slide)

Denote
2
— A . Pt — Y A [CeY/?
Y = inf and d(x) = d
te’l wt ( ) i \/27‘(‘ y

By the independence between Y and X, where X, € N (0,I';,)

P, = P(V < X,) :]E[<D< . )]
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Equivalence between sets A and B 12

[1 Letusshowthat A C B
[0 Fixw € Aandlets* = argmin(ps — Yg — s X;)
[1 Then

Por = Vo (0) = 0 Xr(w) = it (9 — V() — s X, (w)) < O

[1 Consequently

inf ;o — Vi(w)] < ¥5lfps — Ve ()] € Xr(w) = wEB

[1 Then, A C B
[] Similarly it is easy to check that B C A

[1 Thus these two events are equivalent
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The bridge estimator 13

[1 MC can be seen as a numerical scheme to perform integration in a large number of variables

[1 BMC performs one of these integrations exactly exploiting properties of Gaussian processes.

The rest of the integrations are still performed using a MC scheme

)

[1 In the full space the characteristic function of the rare event has support on a region with small
probability and this renders MC ineffective. However BMC smooth out the function to be integrated

allowing a more efficient estimation by the MC part
[ Given an iid sequence {Y () =1, ... ,N} distributed as Y, the bridge estimator p*" for Pz, is

N
v a1 v A . Pt
= NZ: ﬁ where XS
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Asymptotic approximation of the BMC estimator 14

[1 For some values of the system parameters, the infimum in the expression of

- — Y,
= infM 2 inf Gy
teZ Yy tel

is attained near the most-likely time 7, with G- = @

[1 Assume that?(i) € [ng — I, ng};then

SOT ~N SOT_h
() < < ¢
(Fm) = (mf)

2
~ ¢ " /2 corresponds to the well-known LDT

[ The lower bound, in the approximation ® ()

asymptotic bound

2
IP)L ~ € #7 /20 +

[1 The difference between upper and lower bounds

qu)(%—h)_@( Pr >%—<I>’< 907) h o _ W R
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Bridge estimator in the many-sources regime 15

[1 Many-sources regime
[1 nmi.i.d. Gaussian sources
[1 The queueing resources (buffer size and service rate) are linearly scaled with 7

[1 Buffer overflow (over level nb) becomes a rare event when n — o0

— ©—>
A=X"" o Xi+nmt

0, nr =n(u+m)

[1 The overflow probability, in this case, is given by

P(Q >nb) = P(sup<\/1/7n X — gpt) > 0) 2 p (sup (eXi — 1) > O)

tel tel
[l Given an iid sequence {Y(i), i=1,..., N} distributed as Y, the bridge estimator for p is
N (%) (2)
N A 1 Y. @) A . .t —EY,
= — P where Y _ ' = inf
Pe N ; (s\/FTT> © tel (R
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Simulation Scenario 16

L1 Input traffic
(] Fractional Brownian Motion (FBM) = v, = 2!
O Superposition of two independent FBMs = v, = t2H1 282

[1 Integrated Ornstein-Uhlenbeck process (IOU) = v, =t —1+ e
[ Number of generated sample paths: N = 10*

[1 Comparison with LDT asymptotics

[1 Large-buffer regime

2
: Pt
logP(Q >b) ~ —inf
ogP(Q > b) ST
[0 Many-sources regime
2
o R
logP (Q > nb) =~ —n %gg 3T,

[1 Analysis of the upper and lower bounds for ﬁN
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Simulation Results: FBM (H=0.8) 17
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Many-sources regime 18
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Variability of Y(Z) — sample path ( n = 500) 19
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Variability of Y(Z) — histograms 20
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Variability of Y(Z)

— histograms

21
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Variability of Y(Z) — normalized width of the interval 22
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Conclusions 23

[1 We analysed the performance of the Bridge Monte-Carlo (BMC) estimator, which does not rely on

Importance Sampling and does not need any refined preventive theoretical analysis
[ Key features of BMC

[1 Although BMC is not asymptotically efficient, for any choice of the rarity parameter £, BMC performs

better than single-twist IS, even when the change of measure is based on the most likely path p*

For any € > 0 and any twist 7) of the form 7; = A, (o € R):

2 2
UBMC,s S T ywist ,E

[1 The computational cost of BMC is comparable to that of simple IS
[1 The principle underlying the BMC method can be applied to any Gaussian process
[1 BMC could be generalized with more than one conditioning or with dynamic choice of the

parameters

L1 Analysis of upper and lower bounds of the overflow probability (based on the expression of the BMC
estimator)
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