Performance analysis of

Bridge Monte-Carlo Estimator

Oleg V. Lukashenko[†], Evsey V. Morozov[†], Michele Pagano[‡]

Karelian Research Centre of RAS, Petrozavodsk State University, Russia

This work is partly supported by Russian Foundation for Basic research, project No 10-07-00017

^a Dipartimento di Ingegneria dell'Informazione, Università di Pisa, Italy

- Network motivations and theoretical background
 - ▷→ Performance issues in broadband networks
 - ▷→ Problem statement and system parameters
 - ▷→ Overview of key LDT concepts

Bridge Monte Carlo (BMC)

- ▷→ Definition and heuristic interpretation
- ▷→ Asymptotic approximation of the estimator expression

Simulation Results

- ▷→ Analysis with different input processes: FBM, combination of FBMs, IOU
- ▷→ Comparison with LDT asymptotics
- ▷→ Justification of the asymptotic approximation
- Conclusions

- Broadband traffic exhibits Long Range Dependence (LRD), which has a deep impact on performance
- Wide-area networks handle heterogeneous traffic flows with a variety of Quality of Service (QoS) requirements and a primary QoS parameter is the Packet Loss Rate
- Typical values of the loss rate can be very small and therefore hard to estimate through standard
 Monte Carlo simulation
- We focus on the efficient simulation of a single server queue equipped with an infinite buffer and fed by Gaussian inputs
 - ▷→ Flexibility and parsimony: a broad range of correlation structures can be described by few parameters
 - ▷→ Possibility of accurately modelling network data traffic
 - ▷ Central-limit-type arguments: in a wide-area network a large number of independent sources are multiplexed and it is reasonable to argue that the aggregate traffic converges to a Gaussian process
 - ► Fractional Brownian Motion (FBM) has become a canonical model in the context of LRD traffic
 - ▷→ Integrated Ornstein-Uhlenbeck process (IOU)

We refer to a single server queue

▷→ Input traffic

$$A_t = X_t + mt$$

 $\implies m \text{ is the mean input rate}$ $\implies \{X_t\}_t \text{ is a random centred Gaussian Component with variance } v_t \stackrel{\Delta}{=} \mathbb{D}X_t$

Covariance function
$$\Gamma_{ts} \stackrel{\Delta}{=} \mathbb{E} \left[X_t X_s \right] = \frac{1}{2} \left[v_t + v_s - v_{|t-s|} \right]$$

▷→ Deterministic service rate

$$r = m + \mu$$
 with $\mu > 0$

- The consider an upper bound for the loss rate, namely the overflow probability, defined as the probability that the steady-state queue-length Q exceeds a given threshold b
- From Lindley's recursion, the overflow probability can be rewritten as

$$\mathbb{P}\left(Q \ge b\right) = \mathbb{P}\left(\sup_{t \ge 0} \left(X_t - \mu t\right) \ge b\right) = \mathbb{P}\left(\sup_{t \ge 0} \left(X_t - \varphi_t\right) \ge 0\right) \quad \text{where } \varphi_t = b + \mu t$$

▷→ In general, this probability has not a closed form

- ▷ In applications (finance, telecommunications) usually it is very small
- To study the behaviour of the estimators when the probability of interest is small, we introduce a smallness parameter ε in the problem and consider the probabilities p_{ε} defined as

$$p_{\varepsilon} = \mathbb{P}\left(\sup_{t \in \mathcal{I}} \left(\varepsilon X_t - \varphi_t\right) \ge 0\right) = \mathbb{P}\left(A_{\varepsilon}\right)$$

where \mathcal{I} is a finite (simulation horizon is finite) index set: the process X is just a random vector in $\mathcal{X} = \mathbb{R}^n$, where $n = |\mathcal{I}|$ (cardinality of \mathcal{I})

For the trivial MC estimator $\hat{p}_{\varepsilon,MC}$ it is easy to show that when $p_{\varepsilon} \to 0$, the number N of samples to obtain a reliable estimate grows as p_{ε}^{-1}

Basic Large Deviations for Gaussian processes

 \sim Roughly, the Large Deviation Principle for Gaussian Processes states that given an event B

$$-arepsilon^2 \log \mathbb{P}(arepsilon X \in B) \simeq rac{1}{2} \inf_{
ho \in B} |
ho|_{\mathcal{H}}^2$$
 as $arepsilon o 0$

For a finite-dimensional Gaussian process X we have the explicit expression

$$|\rho|_{\mathcal{H}}^2 = \langle \rho, \rho \rangle_{\mathcal{H}} = \langle \rho, \Gamma^{-1} \rho \rangle = \sum_{i=1}^n \sum_{j=1}^n \rho_i \rho_j (\Gamma^{-1})_{ij}$$

where $\langle \cdot, \cdot \rangle$ is the Euclidean scalar product of \mathcal{X} and Γ^{-1} is the inverse of the $n \times n$ covariance matrix $\{\Gamma_{ij}\}_{i,j=1,...,n}$

Heuristics behind Large Deviations for Gaussian processes

In the finite dimensional case $X \in \mathbb{R}^n$, $B \subset \mathbb{R}^n$ and $\mathbb{E}\left[1_{\{\varepsilon X \in B\}}\right] = C\varepsilon^{-n/2} \int_B e^{-\varepsilon^{-2}\frac{1}{2}|x|_{\mathcal{H}}^2} d^n x \simeq C\varepsilon^{-n/2} e^{-\varepsilon^{-2}\inf_{x \in B}\frac{1}{2}|x|_{\mathcal{H}}^2}$

 ${}^{\mbox{\tiny \ef{eq:starses}}}$ For the particular structure of the event $A_{arepsilon}$ we have:

$$-\lim_{\varepsilon \to 0} \varepsilon^2 \log p_{\varepsilon} = -\lim_{\varepsilon \to 0} \varepsilon^2 \log \mathbb{P}(A_{\varepsilon}) = \frac{1}{2} \inf_{\rho \in A} |\rho|_{\mathcal{H}}^2 = \inf_{t \in \mathcal{I}} \frac{\varphi_t^2}{2\Gamma_{tt}} \stackrel{\Delta}{=} \inf_{t \in \mathcal{I}} I_t = \frac{1}{2} |\rho^*|_{\mathcal{H}}^2$$

- \rightarrow The value t^* of t which minimizes I_t is called most-likely time
- The value of ρ which reaches the minimum is the most-likely path ρ^* : in the large deviation regime, the majority of the samples of the process which attains the level φ are concentrated around ρ^*

The approach can be derived by expressing the overflow probability as the expectation of a function of the Bridge Y of the Gaussian process X

The Bridge Y is the process obtained by conditioning X to reach a certain level (in our case the level 0) at some prefixed time τ ; in the following we will assume that $\tau = t^*$

 \checkmark Fix au and consider the following centred Gaussian process

 $Y_t = X_t - \psi_t X_ au$ where $\psi_t \stackrel{\Delta}{=} rac{\Gamma_{t au}}{\Gamma_{ au au}}$

and suppose that $\psi_0 = 0$ and $\psi_t > 0$ for all other values of $t \in \mathcal{I}$

 \rightarrow These conditions are automatically satisfied if v_t is an increasing function

rightarrow The joint process (X, Y) is still Gaussian and the process Y is independent of X_{τ} since

$$\operatorname{Cov}(X_{\tau}, Y_t) = \mathbb{E}[X_{\tau}Y_t] = \Gamma_{\tau t} - \frac{\Gamma_{t\tau}}{\Gamma_{\tau\tau}}\Gamma_{\tau\tau} = 0 \quad \text{for any} \quad t$$

 $<\!\!<\!\!<\!\!<\!\!<\!\!<\!\!<\!\!<\!\!Y$ has covariance function Γ given by

$$\widetilde{\Gamma}_{ts} = \Gamma_{ts} - \frac{\Gamma_{t\,\tau}\Gamma_{s\,\tau}}{\Gamma_{\tau\,\tau}}$$

BMC does not rely on any change of measure

A graphical interpretation of the Gaussian Bridge

$$Y_t = X_t - \psi_t X_\tau$$

The Gaussian Bridge at Work

rightarrow We can express the probability \mathbb{P}_L of the event $L = \left\{ \sup_{t \in \mathcal{I}} [X_t - \varphi_t] \ge 0 \right\}$ as follows

$$\begin{split} \mathbb{P}_{L} &= \mathbb{P}\left(\sup_{t\in\mathcal{I}}[X_{t}-\varphi_{t}]\geq 0\right) = \mathbb{P}\left(\sup_{t\in\mathcal{I}}[Y_{t}+\psi_{t}X_{\tau}-\varphi_{t}]\geq 0\right) \\ &= \mathbb{P}\left(\inf_{t\in\mathcal{I}}\left(\varphi_{t}-Y_{t}-\psi_{t}X_{\tau}\right)\leq 0\right) \end{split}$$

The events

$$A = \left\{ \inf_{s \in \mathcal{I}} \left(\varphi_s - Y_s - \psi_s X_\tau \right) \le 0 \right\} \text{ and } B = \left\{ \inf_{t \in \mathcal{I}} \psi_t^{-1} \left(\varphi_t - Y_t \right) \le X_\tau \right\}$$

are equivalent (see next slide)

Denote

$$\overline{Y} \stackrel{\Delta}{=} \inf_{t \in \mathcal{I}} \frac{\varphi_t - Y_t}{\psi_t}$$
 and $\Phi(x) \stackrel{\Delta}{=} \int_x^\infty \frac{e^{-y^2/2}}{\sqrt{2\pi}} dy$

By the independence between Y and X_{τ} , where $X_{\tau} \in \mathcal{N}(0, \Gamma_{\tau \tau})$

$$\mathbb{P}_L = \mathbb{P}\left(\overline{Y} \le X_\tau\right) = \mathbb{E}\left[\Phi\left(\frac{\overline{Y}}{\sqrt{\Gamma_{\tau\,\tau}}}\right)\right]$$

$$A = \left\{ \inf_{s \in \mathcal{I}} \left(\varphi_s - Y_s - \psi_s X_\tau \right) \le 0 \right\} \qquad B = \left\{ \inf_{t \in \mathcal{I}} \psi_t^{-1} \left(\varphi_t - Y_t \right) \le X_\tau \right\}$$

- \bigcirc Let us show that $A \subseteq B$
 - \Rightarrow Fix $\omega \in A$ and let $s^* = \operatorname{argmin}(\varphi_s Y_s \psi_s X_{\tau})$

>→> Then

$$\varphi_{s^*} - Y_{s^*}(\omega) - \psi_{s^*} X_{\tau}(\omega) = \inf_{s \in \mathcal{I}} \left(\varphi_s - Y_s(\omega) - \psi_s X_{\tau}(\omega) \right) \leq 0$$

▷→ Consequently

$$\inf_{t \in \mathcal{I}} \psi_t^{-1}[\varphi_t - Y_t(\omega)] \leq \psi_{s^*}^{-1}[\varphi_{s^*} - Y_{s^*}(\omega)] \leq X_\tau(\omega) \quad \Rightarrow \ \omega \in B$$

ightarrow
ightarrow Then, $A \subseteq B$

- Thus these two events are equivalent

- MC can be seen as a numerical scheme to perform integration in a large number of variables
- BMC performs one of these integrations exactly exploiting properties of Gaussian processes.
 The rest of the integrations are still performed using a MC scheme

$$\mathbb{P}_L = \mathbb{E}\left[\Phi\left(\frac{\overline{Y}}{\sqrt{\Gamma_{\tau \tau}}}\right)\right]$$

- In the full space the characteristic function of the rare event has support on a region with small probability and this renders MC ineffective. However BMC smooth out the function to be integrated allowing a more efficient estimation by the MC part
- Given an iid sequence $\{Y^{(i)}, i=1,\ldots,N\}$ distributed as Y, the bridge estimator \widehat{p}^N for \mathbb{P}_L is

$$\widehat{p}^{N} \stackrel{\Delta}{=} \frac{1}{N} \sum_{i=1}^{N} \Phi\left(\frac{\overline{Y}^{(i)}}{\sqrt{\Gamma_{\tau \, \tau}}}\right) \quad \text{ where } \quad \overline{Y}^{(i)} \stackrel{\Delta}{=} \inf_{t \in \mathcal{I}} \frac{\varphi_t - Y_t^{(i)}}{\psi_t}$$

For some values of the system parameters, the infimum in the expression of

$$\overline{Y} \stackrel{\Delta}{=} \inf_{t \in \mathcal{I}} \frac{\varphi_t - Y_t}{\psi_t} \stackrel{\Delta}{=} \inf_{t \in \mathcal{I}} G_t$$

is attained *near* the most-likely time au, with $G_{ au} = arphi_{ au}$

$$\Phi\left(\frac{\varphi_{\tau}}{\sqrt{\Gamma_{\tau\,\tau}}}\right) \leq \widehat{p}^N \leq \Phi\left(\frac{\varphi_{\tau}-h}{\sqrt{\Gamma_{\tau\,\tau}}}\right)$$

The lower bound, in the approximation $\Phi(x) \approx e^{-x^2/2}$, corresponds to the well-known LDT asymptotic bound

$$\mathbb{P}_L \approx e^{-\varphi_\tau^2/2\Gamma_{\tau\,\tau}}$$

The difference between upper and lower bounds

$$\Delta \stackrel{\Delta}{=} \Phi\left(\frac{\varphi_{\tau}-h}{\sqrt{\Gamma_{\tau\,\tau}}}\right) - \Phi\left(\frac{\varphi_{\tau}}{\sqrt{\Gamma_{\tau\,\tau}}}\right) \approx -\Phi'\left(\frac{\varphi_{\tau}}{\sqrt{\Gamma_{\tau\,\tau}}}\right)\frac{h}{\sqrt{\Gamma_{\tau\,\tau}}} = \frac{h}{\sqrt{2\pi\,\Gamma_{\tau\,\tau}}}\,e^{-\varphi_{\tau}^2/2\Gamma_{\tau\,\tau}}$$

Many-sources regime

- $\rightarrow n$ i.i.d. Gaussian sources
- \rightarrow The queueing resources (buffer size and service rate) are linearly scaled with n
- \Rightarrow Buffer overflow (over level nb) becomes a rare event when $n \to \infty$

$$A_{t} = \sum_{i=0}^{n} X_{t}^{i} + nmt$$

$$Q_{t}$$

$$nr = n(\mu + m)$$

The overflow probability, in this case, is given by

$$\mathbb{P}\left(Q \ge nb\right) = \mathbb{P}\left(\sup_{t \in \mathcal{I}} \left(\sqrt{1/n} X_t - \varphi_t\right) \ge 0\right) \stackrel{\Delta}{=} \mathbb{P}\left(\sup_{t \in \mathcal{I}} \left(\varepsilon X_t - \varphi_t\right) \ge 0\right)$$

 ${}~~$ Given an iid sequence $\{Y^{(i)},\,i=1,\ldots,N\}$ distributed as Y, the bridge estimator for $p_arepsilon$ is

$$\widehat{p}_{\varepsilon}^{N} \stackrel{\Delta}{=} \frac{1}{N} \sum_{i=1}^{N} \Phi\left(\frac{\overline{Y}_{\varepsilon}^{(i)}}{\varepsilon \sqrt{\Gamma_{\tau \tau}}}\right) \qquad \text{where} \qquad \overline{Y}_{\varepsilon}^{(i)} \stackrel{\Delta}{=} \inf_{t \in \mathcal{I}} \frac{\varphi_t - \varepsilon Y_t^{(i)}}{\psi_t}$$

- Input traffic
 - ▷ Fractional Brownian Motion (FBM) \Rightarrow $v_t = t^{2H}$
 - ▷ Superposition of two independent FBMs \Rightarrow $v_t = t^{2H_1} + t^{2H_2}$
 - ▷ Integrated Ornstein-Uhlenbeck process (IOU) \Rightarrow $v_t = t 1 + e^{-t}$
- The Number of generated sample paths: $N = 10^4$
- Comparison with LDT asymptotics
 - ► Large-buffer regime

$$\log \mathbb{P}\left(Q > b\right) \approx -\inf_{t \ge 0} \frac{\varphi_t^2}{2 \Gamma_{tt}}$$

► Many-sources regime

$$\log \mathbb{P}\left(Q > nb\right) \approx -n \inf_{t \ge 0} \frac{\varphi_t^2}{2 \Gamma_{tt}}$$

Analysis of the upper and lower bounds for \widehat{p}^N

Simulation Results: FBM (H=0.8)

Performance analysis of Bridge Monte-Carlo Estimator

Trondheim – June 2012 Michele Pagano

Many-sources regime

Superposition of two independent FBMs

$$H_1 = 0.8$$
 $H_2 = 0.6$
 $\mu = 0.1$ $b = 0.3$

Integrated Ornstein-Uhlenbeck process

 $\mu = 0.1 \quad b = 0.3$

Variability of $\overline{Y}^{(i)}$ – sample path (n = 500)

Variability of $\overline{Y}^{(i)}$ – histograms

Performance analysis of Bridge Monte-Carlo Estimator

Trondheim – June 2012 Michele Pagano

20

Variability of $\overline{Y}^{(i)}$ – histograms

Variability of $\overline{Y}^{(i)}$ – normalized width of the interval

We analysed the performance of the Bridge Monte-Carlo (BMC) estimator, which does not rely on Importance Sampling and does not need any refined preventive theoretical analysis

Key features of BMC

Although BMC is not asymptotically efficient, for any choice of the rarity parameter ε , BMC performs *better* than single-twist IS, even when the change of measure is based on the most likely path ρ^*

For any $\varepsilon > 0$ and any twist η of the form $\eta_t = \lambda \psi_t$ ($lpha \in \mathbb{R}$):

$$\sigma^2_{\mathrm{BMC},\varepsilon} \leq \sigma^2_{\mathrm{twist},\varepsilon}$$

- ▷→ The computational cost of BMC is comparable to that of simple IS
- ► The principle underlying the BMC method can be applied to any Gaussian process
- ▷→ BMC could be generalized with more than one conditioning or with dynamic choice of the parameters
- Analysis of upper and lower bounds of the overflow probability (based on the expression of the BMC estimator)